Alexa Fluor® 594 anti-mouse CD3 Antibody

Pricing & Availability
Clone
17A2 (See other available formats)
Regulatory Status
RUO
Other Names
T cell antigen receptor complex, T3
Isotype
Rat IgG2b, κ
Ave. Rating
Submit a Review
Product Citations
publications
A_17A2_AF594_CD3_Antibody_IHC_042314
C57BL/6 mouse frozen spleen section was fixed with 4% paraformaldehyde (PFA) for 10 minutes at room temperature and blocked with 5% FBS plus 5% rat serum for 1 hour at room temperature. Then the section was stained with 2.5 µg/mL of CD3 (clone 17A2) Alexa Fluor® 594 (red) and 2.5 µg/mL of B220 (clone RA3-6B2) Alexa Fluor® 488 (green) overnight at 4°C. The image was captured by 10X objective.
  • A_17A2_AF594_CD3_Antibody_IHC_042314
    C57BL/6 mouse frozen spleen section was fixed with 4% paraformaldehyde (PFA) for 10 minutes at room temperature and blocked with 5% FBS plus 5% rat serum for 1 hour at room temperature. Then the section was stained with 2.5 µg/mL of CD3 (clone 17A2) Alexa Fluor® 594 (red) and 2.5 µg/mL of B220 (clone RA3-6B2) Alexa Fluor® 488 (green) overnight at 4°C. The image was captured by 10X objective.
  • B_17A2_AF594_CD3_Antibody_FC_072414.jpg
    C57BL/6 mouse splenocytes were stained with CD3 (clone 17A2) Alexa Fluor® 594 (filled histogram). The data was acquired by BD LSRFortessa™ cell analyzer equipped with Yellow-Green Laser (561 nm).
  • C_Still-image_0408-1_10X-1_1
    Formalin-fixed, 300 micron-thick mouse spleen section was blocked, permeabilized and stained overnight with CD3 (clone 17A2) Alexa Fluor® 594 (red), CD169 (Siglec-1)(clone 3D6.112) Alexa Fluor® 647 (green) both at 5 µg/mL, optically cleared, then analyzed at 225 μm imaging depth on a confocal microscope. Watch the video.
  • D_17A2_A594_CD3_Antibody_3D-IHC_092121.png
    Paraformaldehyde-fixed (4%), 500 μm-thick mouse spleen section was processed according to the Ce3DTM Tissue Clearing Kit protocol (cat. no. 47701). The section was costained with anti-mouse CD68 Antibody (clone FA-11) Alexa Fluor® 488 at 5 µg/mL (green), anti-mouse CD3 Antibody (clone 17A2) Alexa Fluor® 594 at 5 µg/mL (yellow), and anti-mouse IgD Antibody (clone 11-26c.2a) Alexa Fluor® 647 at 5 µg/mL (magenta). The section was then optically cleared and mounted in a sample chamber. The image was captured with a 10X objective using Zeiss 780 confocal microscope and processed by Imaris image analysis software.
    Watch the video.
  • E_57_Mouse_Lymph_Node_CD3_MHCII
    Mice were injected subcutaneously with sheep red blood cells in a volume of 25 l per site on days 0 and 4 and harvested on day 11. Confocal image of C57BL/6 mouse lymph node acquired using the IBEX method of highly multiplexed antibody-based imaging: CD3 (cyan) in Cycle 1 and MHCII (blue) in Cycle 10. Tissues were prepared using ~1% (vol/vol) formaldehyde and a detergent. Following fixation, samples are immersed in 30% (wt/vol) sucrose for cryoprotection. Images are courtesy of Drs. Andrea J. Radtke and Ronald N. Germain of the Center for Advanced Tissue Imaging (CAT-I) in the National Institute of Allergy and Infectious Diseases (NIAID, NIH).
Compare all formats See Alexa Fluor® 594 spectral data
Cat # Size Price Quantity Check Availability Save
100240 100 µg 203€
Check Availability


Need larger quantities of this item?
Request Bulk Quote
Description

CD3, also known as T3, is a member of the Ig superfamily and primarily expressed on T cells, NK-T cells, and at different levels on thymocytes during T cell differentiation. CD3 is composed of CD3ε, δ, γ and ζ chains. It forms a TCR complex by associating with TCR α/β or γ/δ chains. CD3 plays a critical role in TCR signal transduction, T cell activation, and antigen recognition by binding the peptide/MHC antigen complex

Product Details
Technical Data Sheet (pdf)

Product Details

Verified Reactivity
Mouse
Antibody Type
Monoclonal
Host Species
Rat
Immunogen
γδTCR-positive T-T hybridoma D1
Formulation
Phosphate-buffered solution, pH 7.2, containing 0.09% sodium azide.
Preparation
The antibody was purified by affinity chromatography and conjugated with Alexa Fluor® 594 under optimal conditions.
Concentration
0.5 mg/mL
Storage & Handling
The antibody solution should be stored undiluted between 2°C and 8°C, and protected from prolonged exposure to light. Do not freeze.
Application

IHC-F - Quality tested

FC, 3D IHC - Verified

SB - Reported in the literature, not verified in house

Recommended Usage

Each lot of this antibody is quality control tested by immunohistochemical staining on frozen tissue sections. For immunohistochemistry, a concentration range of 1.0 - 5.0 µg/mL is suggested. For flow cytometric staining, the suggested use of this reagent is ≤ 0.25 µg per million cells in 100 µL volume. For 3D immunohistochemistry on formalin-fixed tissues, a concentration of 5.0 µg/mL is suggested. It is recommended that the reagent be titrated for optimal performance for each application.

* Alexa Fluor® 594 has an excitation maximum of 590 nm, and a maximum emission of 617 nm.


Alexa Fluor® and Pacific Blue™ are trademarks of Life Technologies Corporation.

View full statement regarding label licenses
Application Notes

Additional reported application (for relevant formats) include: spatial biology (IBEX)1,2.

Additional Product Notes

Iterative Bleaching Extended multi-pleXity (IBEX) is a fluorescent imaging technique capable of highly-multiplexed spatial analysis. The method relies on cyclical bleaching of panels of fluorescent antibodies in order to image and analyze many markers over multiple cycles of staining, imaging, and, bleaching. It is a community-developed open-access method developed by the Center for Advanced Tissue Imaging (CAT-I) in the National Institute of Allergy and Infectious Diseases (NIAID, NIH).

Application References

(PubMed link indicates BioLegend citation)
  1. Radtke AJ, et al. 2020. Proc Natl Acad Sci U S A. 117:33455-65. (SB) PubMed
  2. Radtke AJ, et al. 2022. Nat Protoc. 17:378-401. (SB) PubMed
Product Citations
  1. Soon MSF, et al. 2020. Nat Immunol. 1.984027778. PubMed
  2. Baptista AP et al. 2019. Immunity. 50(5):1188-1201 . PubMed
  3. Matsumoto R, et al. 2021. Front Pharmacol. 12:715752. PubMed
  4. Waide ML, et al. 2020. Cell Rep. 33:108503. PubMed
  5. Menzel L, et al. 2021. Cell Rep. 37:109878. PubMed
  6. Liu M, et al. 2020. Nature. 587:115. PubMed
  7. Mehta AK, et al. 2021. Nat Cancer. 2:66. PubMed
  8. Prados A, et al. 2021. Nat Immunol. 22:510. PubMed
  9. Wong HS, et al. 2021. Cell. . PubMed
  10. Qi S et al. 2016. eLife. 5 pii: e14756. PubMed
  11. Wennerberg E, et al. 2022. Sci Transl Med. 14:eabe8195. PubMed
  12. Chung YM, et al. 2021. J Immunother Cancer. 9:. PubMed
  13. Palacio L, et al. 2019. Aging Cell. 18(4):e12971. PubMed
  14. Matryba P, et al. 2020. J Immunol. 1395:204. PubMed
  15. Wang X, et al. 2021. EMBO J. 40:e105926. PubMed
  16. Pantelidou C, et al. 2022. NPJ Breast Cancer. 8:102. PubMed
  17. Lederer K, et al. 2020. Immunity. 53(6):1281-1295.e5. PubMed
  18. Lal JC, et al. 2021. Breast Cancer Res. 23:83. PubMed
RRID
AB_2563427 (BioLegend Cat. No. 100240)

Antigen Details

Structure
Ig superfamily, CD3/TCR, 20 kD
Distribution

Thymocytes (differentiation dependent), mature T cells, NK-T cells

Function
Antigen recognition, TCR signal transduction, T cell activation
Ligand/Receptor
Peptide antigen/MHC-complex
Antigen References

1. Barclay A, et al. 1997. The Leukocyte Antigen FactsBook Academic Press.
2. Davis MM. 1990. Annu. Rev. Biochem. 59:475.
3. Weiss A, et al. 1994. Cell 76:263.

Gene ID
12502 View all products for this Gene ID
UniProt
View information about CD3 on UniProt.org

Related FAQs

If an antibody clone has been previously successfully used in IBEX in one fluorescent format, will other antibody formats work as well?

It’s likely that other fluorophore conjugates to the same antibody clone will also be compatible with IBEX using the same sample fixation procedure. Ultimately a directly conjugated antibody’s utility in fluorescent imaging and IBEX may be specific to the sample and microscope being used in the experiment. Some antibody clone conjugates may perform better than others due to performance differences in non-specific binding, fluorophore brightness, and other biochemical properties unique to that conjugate.

Will antibodies my lab is already using for fluorescent or chromogenic IHC work in IBEX?

Fundamentally, IBEX as a technique that works much in the same way as single antibody panels or single marker IF/IHC. If you’re already successfully using an antibody clone on a sample of interest, it is likely that clone will have utility in IBEX. It is expected some optimization and testing of different antibody fluorophore conjugates will be required to find a suitable format; however, legacy microscopy techniques like chromogenic IHC on fixed or frozen tissue is an excellent place to start looking for useful antibodies.

Are other fluorophores compatible with IBEX?

Over 18 fluorescent formats have been screened for use in IBEX, however, it is likely that other fluorophores are able to be rapidly bleached in IBEX. If a fluorophore format is already suitable for your imaging platform it can be tested for compatibility in IBEX.

The same antibody works in one tissue type but not another. What is happening?

Differences in tissue properties may impact both the ability of an antibody to bind its target specifically and impact the ability of a specific fluorophore conjugate to overcome the background fluorescent signal in a given tissue. Secondary stains, as well as testing multiple fluorescent conjugates of the same clone, may help to troubleshoot challenging targets or tissues. Using a reference control tissue may also give confidence in the specificity of your staining.

How can I be sure the staining I’m seeing in my tissue is real?

In general, best practices for validating an antibody in traditional chromogenic or fluorescent IHC are applicable to IBEX. Please reference the Nature Methods review on antibody based multiplexed imaging for resources on validating antibodies for IBEX.

Other Formats

View All CD3 Reagents Request Custom Conjugation
Description Clone Applications
FITC anti-mouse CD3 17A2 FC
PE anti-mouse CD3 17A2 FC
Purified anti-mouse CD3 17A2 FC,IHC-F,IP,ICC
Alexa Fluor® 647 anti-mouse CD3 17A2 FC,IHC-F,3D IHC,SB
Alexa Fluor® 488 anti-mouse CD3 17A2 FC,IHC-F,3D IHC
Pacific Blue™ anti-mouse CD3 17A2 FC
Alexa Fluor® 700 anti-mouse CD3 17A2 FC
PerCP/Cyanine5.5 anti-mouse CD3 17A2 FC
PE/Cyanine7 anti-mouse CD3 17A2 FC
APC/Cyanine7 anti-mouse CD3 17A2 FC
Brilliant Violet 421™ anti-mouse CD3 17A2 FC,ICC
Brilliant Violet 570™ anti-mouse CD3 17A2 FC
Brilliant Violet 650™ anti-mouse CD3 17A2 FC
Brilliant Violet 785™ anti-mouse CD3 17A2 FC
Brilliant Violet 510™ anti-mouse CD3 17A2 FC
APC anti-mouse CD3 17A2 FC
Ultra-LEAF™ Purified anti-mouse CD3 17A2 FC,IHC-F,IP,ICC
Brilliant Violet 605™ anti-mouse CD3 17A2 FC
Alexa Fluor® 594 anti-mouse CD3 17A2 IHC-F,FC,3D IHC,SB
Brilliant Violet 711™ anti-mouse CD3 17A2 FC
Biotin anti-mouse CD3 17A2 FC,IHC-F
PE/Dazzle™ 594 anti-mouse CD3 17A2 FC
APC/Fire™ 750 anti-mouse CD3 17A2 FC
Brilliant Violet 750™ anti-mouse CD3 17A2 FC
TotalSeq™-A0182 anti-mouse CD3 17A2 PG
TotalSeq™-B0182 anti-mouse CD3 17A2 PG
Spark Blue™ 550 anti-mouse CD3 17A2 FC
Spark NIR™ 685 anti-mouse CD3 17A2 FC
TotalSeq™-C0182 anti-mouse CD3 17A2 PG
APC/Fire™ 810 anti-mouse CD3 17A2 FC
PE/Fire™ 640 anti-mouse CD3 17A2 FC
Spark YG™ 570 anti-mouse CD3 17A2 IHC-F
PE/Fire™ 700 anti-mouse CD3 17A2 FC
PE/Cyanine5 anti-mouse CD3 17A2 FC
Spark Blue™ 574 anti-mouse CD3 Antibody 17A2 FC
Spark Violet™ 423 anti-mouse CD3 17A2 FC
PE/Fire™ 810 anti-mouse CD3 17A2 FC
Spark Red™ 718 anti-mouse CD3 17A2 FC
Spark UV™ 387 anti-mouse CD3 17A2 FC
Go To Top Version: 7    Revision Date: 04/18/2022

For Research Use Only. Not for diagnostic or therapeutic use.

 

This product is supplied subject to the terms and conditions, including the limited license, located at www.biolegend.com/terms) ("Terms") and may be used only as provided in the Terms. Without limiting the foregoing, BioLegend products may not be used for any Commercial Purpose as defined in the Terms, resold in any form, used in manufacturing, or reverse engineered, sequenced, or otherwise studied or used to learn its design or composition without express written approval of BioLegend. Regardless of the information given in this document, user is solely responsible for determining any license requirements necessary for user’s intended use and assumes all risk and liability arising from use of the product. BioLegend is not responsible for patent infringement or any other risks or liabilities whatsoever resulting from the use of its products.

 

BioLegend, the BioLegend logo, and all other trademarks are property of BioLegend, Inc. or their respective owners, and all rights are reserved.

 

8999 BioLegend Way, San Diego, CA 92121 www.biolegend.com
Toll-Free Phone: 1-877-Bio-Legend (246-5343) Phone: (858) 768-5800 Fax: (877) 455-9587

This data display is provided for general comparisons between formats.
Your actual data may vary due to variations in samples, target cells, instruments and their settings, staining conditions, and other factors.
If you need assistance with selecting the best format contact our expert technical support team.

ProductsHere

Login / Register
Remember me
Forgot your password? Reset password?
Create an Account